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Affine Frames of Rational Wavelets in H2(ITT+) =

Y. C. Pati P. S. Krishnaprasad

Electrical Engineering Department and Systems Research Center
University of Maryland, College Park, MD 20742

Abstract

In this paper we investigate frame decompositions of H2(ITT) as a method of
constructing rational approximations to nonrational transfer functions in H2{I11) .
The frames of interest are generated from a single analyzing wavelet. We consider
the case in which the analyzing wavelet is rational and show that by appropriate
grouping of terms in a wavelet expansion, H*(ITT) can be decomposed as an infinite
sum of rational transfer functions which are related to one another by dilation and
translation. Criteria for selecting a finite number of terms from such an infinite
expansion are developed using time-frequency localization properties of wavelets.
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1 Introduction

Discrete affine wavelet transforms are a class of transforms defined on function spaces
which provide decompositions of functions in terms of dilations and translations of a sin-
gle function called the analyzing wavelet. In this paper we study wavelet decompositions
of the Hardy space H?(II*) , (where 11+ denotes the half-plane ®e s > 0) via rational
analyzing wavelets. A rational wavelet in H2(11+) can of course be viewed as the transfer
function of a finite-dimensional causal linear tiine invariant system. We show that any
function in H2(II+) can be written as an infinite sum of real-rational functions where
the terms in the summation are related to one another by translations and dilations.
We refer to such a decomposition as a Wavelet System (WS) decomposition of H2(II+)
. In requiring rationality of the analyzing wavelet, orthogonality of the ‘basis’ functions
is sacrificed. However, we show that frames for 112(11+) can be constructed from dilates
and translates of rational analyzing wavelets. The frame property assures completeness
and computability of the decomposition. In problems involving dynamical systems with
nonrational transfer functions (i.e. infinite-dimensional systems), one is often required
to approximate the system by a simpler (finite-dimensional) system. Equivalently, one
is required to contruct rational approximatious to nonrational transfer functions. We
consider here the problem of constructing a causal rational approximation to a causal
nonrational transfer function by selecting a finite number of terms from the WS expan-
sion. Translations and dilations of the analyzing wavelet generate a family of functions
which are well localized in the time-frequency plane. We discuss criteria for selection
of terms in a manner which exploits time-frequency concentrations of affine wavelets
and of the original (nonrational) transfer function. Possible applications of the methods
described in this paper are in system identification and compensator design.

Central to the theme of this paper is the action of the affine group Aff(1) on transfer
functions. It is well-known that the affine group Aff(1) acts on transfer functions in
several ways. These were investigated in some depth in [2]. Two such actions are given

by (for @ > 0, 8 € R),

(a)  g(s) — glas+5)

ag(s)
and (b) g(s) — T aihg(s)
The first action can be imbedded in an action of the group SI(2) on transfer functions
due to Brockett. Some related group theoretical aspects are investigated in the paper
by Grossmann and Morlet [13]. This paper is closest in spirit to our work. The key
difference is that Grossman and Morlet focus on continuous wavelet transforms and
nonrational wavelets.

2 Discrete Wavelet Transforms and Frames for
Hilbert Spaces |

Wavelet transforms provide a means for decomposition of function spaces via dilates
and translates of a single function known as the analyzing wavelet (also referred to as



the mother wavelet). Although wavelet transforms have been studied in the context of a
number of different function spaces, a great deal ol attention has been devoted to wavelet
transforms on L2(IR) . The contents of this paper rely primarily on results derived for
L2(IR) . Define, for aq > 0, the dilation operator D, on L2(IR) by D, f(z) = a!/?f(az)
and the translation operator T}, on L2(IR) by 7}, f(«) = f(x — b). Discrete affine wavelet
transforms on L2(IR) allow vepresentation of any f € L2(IR) as

f = Z Z Cm.n/(r")m,nv (1)
med nel

where 1 1s the analyzing wavelet and,

d)m,n(a’.) = jjnbo Da(’)”Yr/)("U) - ("(’)n/j'(/"/y(“gl;v - an) (

o
~—

for fixed constants ey > 0 and b,.

It has been shown (see e.g. [5]) that it is possible to find functions ¥ and constants a,
and b, for which the sequence {I/Jm,n}m,nez forms an orthonormal basis for L2(IR) . In
this case, (1) is the usual orthonormal basis expansion of a function. i.e. ¢,,, = (f, zbm’n).
However, the requirement of orthogonality of translates and dilates severely restricts
allowable choices for the analyzing wavelet. A great deal of freedom in the choice of
analyzing wavelets can be purchased at the cost of orthogonality if one were to consider

frames instead.

2.1 Frames

Frames, which were first introduced by Duffin and Schaeffer in [7], are natural general-
izations of orthonormal bases for Hilbert spaces.

Definition 2.1 Given a Hilbert space H and a sequence of vectors {h,}> __ C H,
{hnyoo_ is called a frame if there exist constants A >0 and B < oo such that
AlIFIP <Y 1< fiha > 1P < BISIP, (3)

for every f € H. A and B are called the frame bounds.

Definition 2.2 Given a frame {h,} in a Hilbert space H, with frame bounds A and B,
we can define the frame operator S : 'H — H as follows. For any f € H,

Sf=3" < fihy>h, (4)

The following theorem lists some properties of the frame operator. Proof of these and
other related properties of frames can be found in [14] or [6].

Theorem 2.1

(1) S is a bounded lincar operator with Al < S < BI, where I is the identity operator
in H.



2) S is an invertible operator with B-11 < S-1 < A-1[,

(3) Since AI < 5 < BI implies that || — 155S| < 1, 571 can be computed via the

Neumann series,
*)

9 2 k
§1= N (1 5] . 5
A+B:L:g< A+B’> (5)

(4) The sequence {S-1h,} is also a frame, called the dual frame, with frame bounds

B-1 and A-1.

(5) Given any f € H, f can be written in terms of frame elements as
f= <57y > b=y < b > 5T (6)
(6) If there exists another sequence of coefficients {a,} such that f =3 a,h,,

Y lanlP =Y 1< £S5y > P4 D 1< f STy > —ay | (7)

2.2 Frames of Affine Wavelets

Given a function ¥ in L2(IR) satisfying the admissibility condition

YR
/ llr,((.b)‘ (lw < OC‘,
R @l

where {b\ is the Fourier transform of 1, under mild additional hypothesis, it is possible to
choose parameters aq and b, such that (1, ao, by) generates an affine frame for L2(IR) ,
i.e. the sequence {T/Jm,n} as defined by (2) forms a frame for L2(IR) . Numerically, aq
and by can be determined by application of a theorem of Daubechies [6] (see also [17]).

2.2.1 Time-Frequency Localization in Affine Wavelets’

The key property of affine wavelet decompositions which has demonstrated noted ben-
efits in a number of applications, is the time-frequency localization which arises due to
the translations and dilations. The concepts of time and frequency concentrations of
a function can be precisely defined (c.f. [17]), but roughly speaking these are intervals
in the time or frequency domains which contain ‘most’ of the energy in the signal. Let
Q1) = [wo(¥), w; ()] denote the frequency concentration of 1 and R(1) = [to(v), t1(2)]
(to > 0) denote the time concentration of s, where v is an admissible analyzing wavelet.
Then % is a function which is concentrated in the time frequency plane on the rectangle
Q = Q) x R(y) and each of the wavelets 1, ,,, are concentrated on rectangles

Qi = [ag™(to(1) + nbo), ag™ (£1(1) + nbo)] X {agiwo(1h), aw ()]

(Assuming symmetry about w = 0, only positive frequencies are considered.)



3 Wavelet Decompositions of H2(II+)

3.1 The Hardy Space H2(Il+)

The class of transfer functions of interest to us is the Hardy space H2(IT+) where
[T+denotes, the half-plane e s > 0. For completeness, a few important properties
of H2(IIt) are reviewed here. For further discussion on HP spaces see {15, 8, 9]. In
particular [15] discusses the space HP(II+) and the relationship between H? spaces on
the unit disc and Hr spaces of II+

Definition 3.1 Given a function F' which is analytic in 11+, I is said to belong to the
class H2(II+) if

sup/ |F(z+1y)|* dy < o, (8)
z>0 J -0
H2(II+) is a Banach space with norm (denoted || - ||52) defined by (8).

Some of the most basic properties of H2(II+) are captured by the following theorem

(c.f. [15]).
Theorem 3.1 Given F' € H2(IIt), the following are true:
(1) The nontangential limit of F' exists at almost every point on the imaginary axis.

(2) The boundary value function of F'is in L2(IR) and,

i 1 } T
F(.E + ’Ly) = ;r- A{F(?M)mdw, z >0

(3) The functions F (y) = F(z + ty) converge in L% norm to I'(iy) as z — 0.

The elements of H2(II+) are transfer functions of causal input-output stable linear sys-
tems. More precisely, we have the classical result,

Theorem 3.2 (Paley-Wiener) A complex-valued function F is in H2(II+) if and only
i,

[e ]
F(s) :/ f(t)e=stdt,
0
for some f € L2(0,00) . Furthermore this representation is unique.
By the Paley-Wiener theorem,
1

2r R

F(iw)etdw = 0 for ¢ < 0. (9)

Hence boundary values of functions in H?(Il+) comprise a subspace D of
L2(IR) characterized by (9). We also know by Theorem 3.1 that given the boundary
value function F(iw), F can be recovered on the right half-plane by the Poisson integral.
Also ||F||g= = || F|| ;> where F is the nontangential limit of F.

A Hilbert space structure is placed on H2(II+) by the inner product defined by,

[ ]

(F,G) e = / F1w)G(w)dw.

-0

A



Remark: In what follows, we take the liberty of identifying H2(IT+) with D . We use
w to denote the real frequency variable and write F(w) to denote the boundary value
function F(ww). The complex frequency variable will be denoted by s. In the remainder
of this paper, we adopt the following notation:

RH?(IT+) : Real-rational functions in H2(IT+) .

HEZ (I1+) : Functions in H2(Il*+) which are Laplace transforms of real-valued functions in
L2(0,00) .

Note that RH2(IT+) ¢ HZ (IT+).

3.2 Wavelet Transforms on H2(II+)

By the Paley-Wiener theorem RHZ2(I1+) represents transfer functions of causal finite-
dimensional linear systems with square integrable weighting patterns. Of particular
interest to us is the case where the analyzing wavelet W belongs to the class RH2(II+).
For any F' € H*(II*) define the restriction of F' to vertical lines in the right half-plane
by,
F.y) = F(z+y), x> 0.

Also define the Fourier transform along vertical lines in T+by,

~ 1 .
Folu) = P /13 Fa+wy)et¥dy

for F e H2(I1+).
Now let ¥ € RH2(II+) ¢ H2(II*) be our candidate for an analyzing wavelet, and
suppose that for any ¢ > 0 ¥ satisfies the admissibility condition,

B,
o=, I“Tl—

Under these assumptions,a family of continuous wavelet transforms can be defined on

H2(IT+) . Let,

du < oo, z > 0. (10)

Wb (s) = |a'/? U(as — ib), a,belR, a>0.
Then for any I’ € H2(II*) define the continuous wavelet transform on the line e s =z
by,
WoF(a,b) = [ Fa(y)¥{(y)dy. (11)

R
Inversion of this transform is accomplished by the inversion formula,

la db
Fu //WF(L b\I/(“"(z/)((“ .
" Co.

To define a discrete wavelet transform with respect to U, let

N m/2 o S e — o
U,n(8) =ag"W(ags —inby) 1> 0. Res=u.



Assume ¥ satisfies the admissibility condition and let ¢y > 0 and by be such that the
tamily {\I’m,n}m,nelv is a frame for D which is a closed subspace of L2(IR) . Thus for
any £ € H2(II*+) we have that

Fr(y) = Z Z <Fv S—lq}m,n> \Dm.vw

where S is the frame operator associated with the frame {\P }

" m,n

4 Wavelet System Transfer Functions

In this paper we restrict discussion to affine frames constructed on the imaginary axis.
Hence we require admissibility of the analyzing wavelet W(s) for fte s = 0 and consider
the boundary values of H2(II+) .

Let U(w) denote the nontangential limit of an admissible analyzing wavelet W(s)
and let (ag, b) be such that (U, ag, by) generates an afline frame for H2(Il+) . Then any
F € H2(II*) can be represented as

Flw) =YY ennVmalw), (12)

where as before ¥, ,(w) = aé"/Q\I/(az)”w — nby). Assuming that 7 € H2?(II*) is the

Laplace transform of a real-valued weighting pattern in L2(0, 00) , and W is a real-rational
wavelet, we can ask the question; is an arbitrary truncation of the frame expansion (12)
the transfer function of a real weighting pattern? Since RH?(II*) arises as the image
under the Laplace transform of certain real-valued weighting patterns, if the analyzing

wavelet ¥ € RH?(II+) then ¥, (—w) = ¥: (w) for n = 0 and m € Z. However,
this symmetry is violated for n # 0. To circumvent this problem,we can group together
positive and negative translates of the analyzing wavelet to form what we call a wavelet

system transfer function.

Definition 4.1 Given ¥ € RH2(II+) C H2(II*) a wavelet system transfer function is
defined as a function of the form,

G’,n,/n(s) = a\p'ln,ﬂ.(s) + aT\I}WI,—'IL(S)
where @ denotes the complex conjugate of a.

Proposition 4.1 Let F(s) be a real-rational function in H*(II*) . Then, the wavelet
system transfer function defined by

Gnl’n(s) = aF’ITl,’I'L(S) + aFm,—n(‘S)’

is also a real-rational function in H2(11+) .
Proof: Let F(w) and G™n(w) denote the nontangential liniits of F(s) and G™»(s)
respectively. Since H2(IT+) is a closed linear space, it is clear that G™n(s) € H2(II+). It



is also clear that G™n(s) is rational. To show that ™ (s) is real-rational we only need
to show that

o J TN

Gm,n( ) — C, ( )

Now,

Gm,n(_w) = aFm 11(““) + 'CY]’_‘m —-n(_w)

2
= aagl/ M(—alw — nby) + @ag m/2 I'(—af'w + nby)

77l

= aa)*F(- (afiw +nby)) + aam/zF(—(a
m/2

MW —nbg))

FlaMw + nby) + @ag 'z F(a™w —nby)
- m —71(“) + aFm n( )
— Gm n(w)' -

Grouping together translates of the analyzing wavelet to form WS transfer functions
as in Definition 4.1, requires that the coefficients that appear in front of each of the
two individual wavelet terms be complex conjugates of one another. TFor WS transfer
functions to be useful, we need to verify that the coefficients <F S-1 I/m'n> satisfy this
condition for a interesting class of functions in H2(I1*) . In verifying this condition, we
make use of the following proposition.

Proposition 4.2 Let f and g be boundary values of functions in H2(1I+) . Also let f
and g be such that f(—w) = f(w), and g(—w) = g(w). then,

<fa gm,n> = <j7 gm,—n>‘

Proof: (See Appendix A)

Using Proposition 4.2, we can show that for functions in H2(Il+) , which are the Laplace
transforms of real-valued functions in L2(0, o0o) , the wavelet coefficients do indeed satisfy
the conjugation condition required for utility of the concept of WS transfer functions.

Lemma 4.1 Let f and ¢ be boundary values of functions in H2(II*) such that f(—w) =
f(w), and g(—w) = g(w). Let ag > 0 and by be such that {gm s}t mncz is @ frame and let
S be the associated frame operator. Then,

= <f’ S_lf/m,n> = <f’ ‘Sv—lg7n,—n> = Cpmpen
Proof: Since the frame operator S is self-adjoint,
<f3 S_lgm,n> = <S~1f7 gm,n> -

Therefore by Proposition 4.2 we need only check that if f(—w) = f(w) then S-!f(—w) =
1f((.u). Now,




Let

van(w) == <f3 gm,n> gm,n(w) + <./’ gm.,—n> gm,—n(w) m e y/A yn e Z+a n # 0
Gm,O(w) = <fa gm,0> gm,O(w) m e Z.

Then
(S5)-w) = Y Gmﬂ(—w)+}jc~w<—w)}
m L n=1
r 0
= 2 W(wHZW(w)}
= (Sf)(w)
Thus,

KI“A_?ES) f} (~w) = (I“ AiBS> i)

and together with (13), we get (S-1f)(~w) = (S~1f)(w), which completes the proof.
|

The above observations lead us to the definition of what we will call the Wavelet
System Transform on H2(II+) . We first define the space containing the image of the
WS transform operator.

Definition 4.2 Define R(J) as the space of sequences of functions {F}}ier such that
F, € RH2(I1*) ¢ H(IT+) for all k € J and

1> Fillzs < oo | (14)

ked
Definition 4.3 Let ¥ € H2(Il+) be an admissible real-rational analyzing wavelet and

ag > 0, by such that (V,aq,by) generates an affine frame for H2(II+) . The Wavelet
System transform is defined by the operator Hy : H2 (II+) — R(Z x Z*),

H‘I’F = {Fm,n}mez, n€Z+ !
where for any F € HX(II+), F™» is given by,

Fmn(w) = <F, S‘l\llm’n> U, a(w) + <F, S‘l\Ilm,_n> U wlw) meZneZ*, n#0
Fm,O(w) = <F’ S—l\pvn,0> \Ijm,()(w) méeZ. (15)

The operator Hy defines an invertible isometry from H2(I1+) to R(Z x Z*), (where (14)
defines the norm on R(J)). Inversion of Hy involves a simple summation of terms in
the sequence { Fmn}.

Putting together Proposition 4.1 and Lemma 4.1, we can now state the main decom-
position theorem for H (IT+) .

oo



Theorem 4.1 Let W € RHZ(II+) be an admissible analyzing wavelet, and ay, > 0, b,
such that (V,ag,by) generates an affine frame for H2(I1*) . Then, any F' in HE(I1+)

can be represented as,
F — Z Z ]7771,77,7 (16)

m n=0

where, each Fn (€ RH2(II1)) is a wavelet system transfer function defined by,

Fm.n = <F, S"l\I/myn> \I}m,n + <F7 ‘S'~1\I/7n,n>\ljm,——n m & Z’ no= 1727 e
Fmo = <F7 S_l\pm,0> \I}m‘O meZ. (17)

Note that if the analyzing wavelet U is of degree N, then the degree of each Fmn is

bounded by 2N.

4.1 Example: Rational Analyzing Wavelet for H2(II+)

As an example of a rational analyzing wavelet for H2(II+) | consider the function

U(s) = 1,6 > 0.

It is easily verified that W(s) is in H2(IT+) and furthermore W is an admissible analyzing
wavelet i.e.,

/ U(x+w)dy=0 for z>0.
R

Taking the inverse Laplace transform of ¥, the weighting pattern ¥ (¢) corresponding to
WV is given by,
E-le~vtsin(€t) for t >0
t) = .
v(t) { 0 for t < 0

The H2(II*) norm of ¥ can also be found to be,

2r <l B cos(arctan({/ﬂ))
i@ Vs

Figure 1 and 2 show this wavelet ¥ evaluated on the imaginary axis, and the corre-
sponding weighting pattern ¢ for different values of ¢ and +.

152 =

4.2 Constructing an Affine Frame for H2(Il+) from ¥

For the purpose of numerically determining values of the dilation stepsize ay and trans-
lation stepsize by such that (U, ag, by) generates an affine frame for H2(II+) we can utilize
Theorem C.1 and Corollary C.1 in Appendix C. Figures 3-4 show the results of applying
Theorem C.1 and Corollary C.1 for the case where ¢y, = 2.0. Hence for a, = 2.0 and
0 < by <17 the sequence {\Ilmyn} forms an affine frame for H2(I1+) .

9
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Figure 1: H2(II+) wavelet ¥ for v = 5, = 1, and weighting pattern .

5 Properties of Wavelet Systems

5.1 Time-Frequency Localization

Perhaps the most useful property of wavelet system decomposition is the time-frequency
localization which arises due to the translations and dilations. As in Section 2.2.1,
let (V) = [wo(¥),w (V)] denote the frequency concentration of ¥ and R(¥) =
[to(¥), t,(W)] (to > 0) denote the time concentration of W (computed using the inverse
Laplace transform). Then ¥ is a function which is concentrated in the time frequency
plane on the rectangle @ = Q(V) x R(V) and each of the WS transfer functions are
concentrated on rectangles

Qn = [aam(wo(\ll)—Q—nbo), ag™ (w1 (W) +nbo)] [%nto(\p)a a"t (V)] = Q¥ ,0) X B(¥0.0)-

Figure 5, shows the distribution of the rectangles Q,,, in the time-frequency plane.
Thus the WS expansion (16) provides a decomposition of H2(II+) in which each term
represents a finite-dimensional system which is localized in both time and frequency.
Since the wavelets for H?(Il+) are constructed in the frequency domain, the time and
frequency axes are interchanged when compared to the analogous picture for wavelets
constructed in the time-domain. A noteworthy feature of time-frequency localization
properties of H2(II+) wavelet systems is that:

e Near ¢t = 0, while time localization is good, the frequency concentration of each
wavelet system encompasses a large band of frequencies.

o For ¢t >> 0, frequency localization is very good so that it is possible to ‘zoom’ in on
narrow frequency bands, whereas localization in time is poor.

10
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Figure 2: H2(IT+) wavelet W for v = 5,¢ = 10, and weighting pattern .

5.2 Poles and Zeros

Given the poles and zeros of the analyzing wavelet ¥ we would like to examine the
manner in which the poles and zeros of the WS transfer functions are influenced by the
translations and dilations. Assume first of all that ¥ has no real axis poles and that W
is a degree N real-rational function in H2(II+) . Let {p,, Dy} sz/f be the set set of poles of
U(s), and {zj,z_j}le be the set of zeros of W. Since W is real-rational, ¥ can be written

* P(s) _ Ils—=)s - %)
Q(s) [Te(s = pe)(s = Px)’

where, P(s) and Q(s) are relatively coprime. Thus,

tr

U(s) =

G (S) _ agl/?- Hj((LBnS'—Z]' —2.72[)0)((16"3_5;
" [T (ags — p — inbo)(af's — Py — inby)

ag* TIy(s = Bim,m)(s = 50men)) — Pals)

—nby)

_ _ , 18
TG (s = o))~ Qo) (18)

where,
Bi(m,n) = ag™(z; +inby)  w(m,n) = ag™(Zj +inby) (19)
me(mon) = az™(p +indy)  ve(mn) = @™ (Fp + inby) (20)

Note that n,(m, —ﬂ) = Tp(m,n) and vi(m, —n) = Fr(m,n) and By (m,—n) = F(m,n)
and vi(m, —n) = B;(m,n). Therefore the poles of G (s) = a¥,, . (s) +aV,, _,(s) are

{ne(m,n), 70m,n), v,(m,n), v (m,n)}. (21)

Thus the effect of dilations and translations upon poles is,

11
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Figure 3: Estimates of frame bounds, using H2(I1*) analyzing wavelet ¥ of Example 1,
with dilation stepsize a = 2, as translation stepsize b is varied. Solid curve represents
the lower frame bound A and the dashed curve represents the upper frame bound B.

e Dilations move the poles of G radially away from and towards zero. As the
dilation index m increases, the poles move towards zero and as m decreases the
poles move away from zero. However, the poles remain in the closed left half-plane
which is crucial since otherwise the G™" would not remain in H2(II+) .

¢ The complex translations simply translate the poles along vertical lines in the left

half-plane.

If we write G (s) = N,, ,.(8)/ D,n(8), then the zeros of G™n(s) are the roots of
Nm,n(s) = aP'm TL( )D’In —n(S) + .CYP'I'IL “"n( ')Dnl 71(8)
= aH s — B;(m,n))(s —v;(m,n )H s = p(m,n))(s — 7g(m,n))
-{—aH (s = B;(m,n))(s — F;(m,n)) H s —np(m,n))(s — ve(m,n))

k

Without actually deriving expressions for the zeros of G™"(s) we make the following

observations:
e The zeros of G™"(s) occur in complex conjugate pairs.

o For n # 0, if G™" has no real-axis poles, then N, .(s) and D,, ,, are coprime, and
therefore G™(s) is a strictly proper rational function of order 2N.

¢ For n = 0 pole-zero cancellation results in G™7(s) of order V.

e If I(n) is the number of poles of G™™ on the real axis then the order of G™"(s) is

ON —I(n).
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Figure 4: Ratio (BJA) of estimated frame bounds, using H2(I1+) analyzing wavelet ¥ of
Ezample 1, with dilation stepsize a = 2, as translation stepsize b is varied. Solid curve
represents B/A, and the. dashed line indicates the level where BJ/A = 1.

5.3 State Space Realizations of Wavelet System Transfer Func-
tions

Let (t) be the weighting pattern (i.e. inverse Laplace transform) corresponding to
the real rational H2(IT+) -wavelet ¥ and define the triplet (A, B,C) to be a minimal
realization of W. In this section we examine the question of realizations of the WS
transfer function Gmn(s) = a\¥l,, ,.(s) + o=V, _,(s). Let ap and a denote respectively
the real and imaginary parts of . Since (A, B,C) is a realization of W,

Y(t) = Cexp(At)B.

Taking the inverse Laplace transform, the weighting pattern corresponding to Gmn(s)
is,
gm,n(t) — aaam/2‘¢(a5m )einag_mbot + 67(10_77"/2,17/)((Lgmt)e—ina;mbot
= agm/21/)(aamt)2 [cyR cos(naz™bot) — oy sin(naambot)] (22)
= aaath exp(ag™At) Beinao "ot aagmﬂc exp(aamAt)Be-ina;mbot

= aagm/ZC’ exp((ag™A + inai™bol)t) B

+aa5’"/20 exp((a;™A — iagmnboI)t) B. (23)
Equation (23) immediately provides a complex realization of G™(s) which is
. ag™A + mag byl 0 o
Amn = [ 0 ag ™A —nag byl (24)
By, = [B B (25)
c.. = [ag’”/ 200 ag™ 250} (26)

13
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Figure 5: Time-frequency concentrations of wavelet systems.

However, since 1, ,(t) is a real weighting pattern, we need a change of basis to give us
a real realization. The differential equations corresponding to (26) are

£ = (agm™A+inag™byl)xy + Bu
£, = (a™A—na;™byl)z, + Bu
and the output map is given by
y = a3™*aCxy + ay™*aCa,.
Let, z; = (z; + ,) and 2z, = ¢(z; — z,). Then we get
7y = aj™Az +nag™byz; +2Bu
7y = ag™Azy —nag™byz.
Under this transformation the output map becomes
—-m/f2

y = ag ' (arClay + ag) +10,0(2; — 23))

= ag"‘” (apCz +ia;Czy).

From (29) and (29) we get the following real realization of G™

—m —m
ag™ A nag"bel

Amn - —m ] ) n 7é O

| —nag™bel  ag™A
B,, = [2B 0", n#0

Con = agm/chRC ag’”“alc]

(Ao BuoyCmo) = (057 A, Byag"*aC)

"(s),

, n #0

(30)

(31)
(32)
(33)
(34)

It is interesting to note that, in this form (31-33), the dilations and translations which
appear in the WS transfer function G,, ,,(s) aflect the state space realization via dilations

and translations as well, i.e.

(A0 0 -1
e (4 ] [ 7))

14
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5.3.1 Parallel Connections of WS Transfer Functions

In constructing rational approximations (see Section 7), we will be considering parallel
connections of WS transfer functions of the form,

Grs)= Y G, (39)
(mn)eg

where J is a finite index set. Given Equations (31-33) defining the realization
(A By Crnn) of GMn(s), a state space realization of (7 7(s) is readily obtained.

Aml,n} 0
Aml,né 0
0 .
Ay = Ay 2 0 (36)
0 Ay 2
0
0 0
T
Bj = [Bnl],n}? B7711,né7 o ] (37)
0.7 = [le,n{a le,néa o ] (38)

5.3.2 Minimality of State Space Realizations

An obvious question that can be asked regarding the realization (36-38) of G ;(s) is
whether such a realization is minimal in the sense of being both controllable and ob-
servable. We have the following result,

Theorem 5.1 Let ¥ € H2(IIt) be an admissible rational analyzing wavelet, let {pj}
denote the poles of ¥ and let (A, B, C) be a minimal realization of ¥ (of dimension N ).
Also let Jbe a finite, bounded index set. Then

(a) The realization (31-33) of G™n(s) is minimal for all (m,n) € J if and
only if, for any j = 1,..., N, there do not exist any nonzero integers k, such

that.
: Im p;

b
(b) The realization (36-38) of G 7(s) is minimal if,

= (39)

(1) (Amns BimsCon) as defined in (31-33) is a minimal realization of
Gmn(s) for all (m,n) € J, and

2) For any j,l=1,...,N, there do not exist any nonzero integers k, such
¥y g

that. . .
log | — pj) = k. (40)
log a, —Re p

Proof: (See Appendix B) m



6 Computing the Wavelet System Decomposition

In principle, given a frame {\I/m,”} the coefficients of a WS decomposition of any
f € H2(II*) can be computed by first computing the dual frame {S““Ilm'n} using
the Neumann series expansion for the inverse frame operator S—1 and then computing
the inner products of f with elements of the dual frame. However in practice, this may
prove to be an extremely cumbersome computation, especially in cases where the frame
is not close to being a tight frame (B/A = 1). Expansions with respect to frames are in
general not unique due to the lack of linear independence. It can be seen from Theorem
2.1 that among all possible expansion coefficients for a given function f, the coeflicient
sequence ¢ :{<f, S“l\I/myn>} is optimal in the sense of minimum ¢2(Z?*) norm. That is

if {am’n} is such that
f = Z Z am,n\pm,n

m n

S NAST LS

For WS approximations using a finite number of terms, the problem of computing co-
efficients may be posed as a least squares approximation problem. Among all possible

then,

2
am,nl .

sequences of approximation coefficients, the minimum ¢2 norm coefhicient sequence can
be obtained by casting the least squares problem into the form of a system of linear
equations and then utilizing the generalized inverse Pt = (P*P)~1P* to solve for the
coefficients.

6.1 Example: WS Decomposition

Example 1: Heat Equation with Dirichlet Boundary Control
Consider a system defined by the partial differential equation,

& = 2z 50)=0, 2(1) = u(t)
Ui 2R )

This system has transfer function [4]

Gi(s) = sinh /szq
ne = sinh /s

By assuming lowpass characteristics of the sensor, we can write the overall transfer

function as
1 sinh+/szq
s+ 7 sinh/s

A decomposition of G(s) was computed using 12 dilation levels (m = —5,...,6) and up
to 33 translations at each dilation level. The results of this decomposition are shown in
Figures 6-8 which are different representations of the magnitude of the wavelet system
expansion coeflicients. Along the dilation axis, zero corresponds to the lowest dilation
level (m = —5), and along the translation axis zero corresponds to n = 0. Figures 6 and

G(s) = (42)
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7 are 3D and contour plots respectively of the coellicient magnitudes and Figure 8 is a
density plot in which each rectangle is shaded according to the corresponding coeflicient
magnitude. The key feature in this decomposition, which is probably most obvious

Translations

Figure 6: Wavelet system decomposition of heat equation transfer function - 3D plot of
magnitude of expansion coefficients

12 F 1

Dilations

3 10 15 20 23 30
Tranalations
Figure 7: Wavelet system decomposition of heat equation transfer function - contour
plot of magnitude of expansion coefficients

in the density plot (Figure 8) is that the magnitudes of the coefficients are very well
concentrated. This feature, which is due to the time-frequency localization properties of
affine wavelets, permits us to pick a finite number of ‘significant’ terms in the wavelet
system decomposition. In doing so, a finite-dimensional approximation to the original
transfer function is obtained. Using the results of Section 5.3, it is also possible to
immediately write down a minimal state space realization of the approximating system.

17



I
I | ]
| |

[
\1%

I
|

£33l

a 5 0 15 20 <5 30
Translatzons

Figure 8: Wavelet system decomposition of heat equation transfer function - density
plot of magnitude of expansion coeflicients

7 Rational WS Approximations to Nonrational H2(II+)
Transfer Functions

Wavelet system decompositions as in (16) provide a means of representing nonrational
transfer functions in H2(II*) as infinite sums of rational transfer functions!. As men-
tioned earlier, our primary objective in deriving such a decomposition is to devise a
systematic method of constructing rational approximations. What is required now is
a mechanism which allows for judicious selection of a finite number of terms from the
expansion in (16). For this purpose we utilize the localization properties afforded us by
affine wavelets.

For a significant class of transfer functions arising from physical systems, the WS
decomposition will result in a reasonably compact representation in the sense of well
localized and rapidly decaying coefficients. This phenomenon can be explained on the
basis of the time-frequency localization properties of the WS transfer functions and the
observation that H2(II+) transfer functions arising from physical systems are often well
localized in time-frequency as well. It is possible to devise a variety of schemes, each
relying on time-frequency localization properties, for the selection of terms in a WS
decomposition for use in a finite-dimensional approximation.

One possible choice for the selection of a finite-dimensional WS approximation can
be based upon knowledge of the time-frequency concentration of the (nonrational) trans-
fer function which is to be approximated. For example given that the time-frequency
concentration of a transfer function f € H2(II+) is Q(f) we can select a subset of the
wavelet system transfer functions based upon the size of Q(f) (1 Q,, ., where Q,, ., is the
concentration of the WS transfer function G™(s). Daubechies in [6] provides bounds
for the error of such approximations in terms of the energy of f outside Q(f). A second

1Note that causality is preserved due to the property described by Equation (9)
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selection scheme could consist of first computing the wavelet expansion coefficients for a
large number of terms and then simply discarding those terms with ‘small’ coeflicients.
This second method is similar to those used to achieve signal or image compression via
wavelet decompositions (c.f. [3, 18]). One such selection criterion, can be based upon
the €2 norm of the coefficients. Let, us assume that we have computed the WS decom-
position of a transfer function G and let o, ,, = <G,S‘1\Pmm> denote the coefficients.
We choose the I largest coefficients, (whose indices we store in an index set J), where
K = #(J) is the smallest integer such that,

2

am,nl
I‘Z

Z(m,n)ej

Z(m,n)

where 0 < § < 1 is some predetermined tolerance. We now define a rational approxi-
mation, Gz, to G as, G7(s) = X, nes G™"(s). Note that the results of Section 5.3
immediately provide a minimal state space realization of G ;.

2 (1 —6)a

am,n

7.1 Approximation Error Bounds
The following lemma provides a bound on the approximation error using the scheme

just described.

Lemma 7.1 Let {z,}, € Z be a frame for a Hilbert space H, with frame bounds A and
B. Assume ||z,|| = 1, for alln € Z. For any f € H, define an approzimation f to f
by,

F= f5" %) an,

neJ

where J is an index set, chosen to satisfy
DA 5T ) 2 (1= 6) ) S 57l
neJ nel
for 0 <§ < 1. Then,
~ B
— 2 < 5= 2.
17 = A < 6= 1111
Proof: By the frame condition,
~ ~ 2 ~
B = fip < (- Fose)| < A - e
keZ

Since, f — f = Zmzj (f,S'z,)z,, we have two coeflicients sequences representing the

expansion of f — f with respect to the frame {z,}. Therefore by Theorem 2.1,

DSl 2 3 (5 = Fosma)|

ngJ kel

19



Therefore,

2

B -JIP < Y[ -Tise)

keZ

< D HA ST
ngJ

< 631,57
kel

< SATHISIP

from which the result follows. u

Remark: The error bound in Lemma 7.1 is established in the general setting of frames
in Hilbert spaces. When applied to the specific case of affine wavelet frames, the bound
may prove to be quite conservative. This is because time-frequency localization proper-
ties of afline wavelets are not exploited in the lemma.

7.2 Example: Rational WS Approximation

As an example, consider the WS decomposition of the heat equation transfer function
in Section 6.1. Letting § = 0.4 the above described scheme results in the selection
of 7 terms, with a corresponding normalized L? approximation error of 0.109, and an
approximating system of dimension 22.

& Conclusions and Discussion

In this paper we have introduced a new decomposition (which we call a wavelet system
decomposition ) of H2(II+) . WS decompositions provide a representation of H2(II+)
as an infinite sum of rational functions of bounded degree. Construction of the WS
representation is based on an appropriate grouping of terms in an affine wavelet frame
decomposition of H2(II+) where the analyzing wavelet is rational. For a rational an-
alyzing wavelet of degree N the terms in a WS expansion are either of degree N or
2N.

WS decomposition naturally leads to methods for constructing rational approxima-
tions to nonrational transfer functions in H2(II+) . Criteria for selecting a finite number
of terms from the infinite wavelet system expansion rely on compactness of representa-
tion which arises due to time-frequency localization properties of the wavelet systems.
Much work remains to be done to understand the approach of the present paper against
the background of prior work on LZ and H® approximation theory (c.f. [11, 10, 12, 1]).

A point should be made regarding our motivation for constructing affine frames in
the frequency (Laplace) domain as opposed to directly decomposing weighting patterns
via affine wavelets in the time domain. First of all, our approach naturally preserves
causality of the approximating system since each term in the WS expansion is in H2(IT+)
and therefore corresponds to the transfer function of a causal system. If one were to
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use affine wavelets in the time domain, special ‘tricks’ need to be applied to preserve
causality since (even in the case of compactly supported wavelets), translations would
eventually result in a noncausal wavelet. Secondly, there would be no mechanism for re-
taining rationality of the Laplace transforms of the individual wavelets, since translations
(delays) prevent this.

As a coucluding remark, we should mention that the following result has recently
come to our attention [16]

Theorem 8.1 There exist no orthonormal bases of wavelets for H2(II+) generated via
the framework of multiresolution analyses, with an analyzing wavelet 1 such that @ is
continuous and,

1)/(5)| < Clw|™ for any a > 1/2.

In particular this rules out smooth and well localized orthonormal bases of rational
wavelets for H2(II+) . Although it has not been demonstrated that multiresolution anal-
yses are the only means of constructing wavelet orthonormal bases, all known examples
of orthonormal wavelet bases can be associated with multiresolution analyses. It re-
mains an open problem to construct an orthonormal wavelet basis (even for L2(IR) )
which does not arise in this way. The above theorem suggests that if one wishes to use
rational analyzing wavelets, it is perhaps necessary to consider the more general setting
of frames (including Riesz bases).
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Appendix A

Proof of Proposition 4.2

Without loss of generality we can consider the case m = 0. Therefore we need to

check that for b € IR,

[ r@rsto s vyt = ([ stwrato - ) =o. (A43)

Consider the real and imaginary parts of the Lh.s. of Equation (A.43) separately.

[\
(8]



Real part Taking the real part of Equation (A.43) ,

Re ( [ Flgte+ b)ds ( [ f(w)g(w—b)dw)>
= s [ flogor it [ st ol
(

= e ([ )l —go-)do+ [T S0+ - gl 1) o)

= e (—Zf(—w)(g(—w+b)~ (~w =) dw+/ ) (9o 4 0) - gfor = B) o
= e ([ 1) (ot =) = ol=to 1) Dot [ ) (ol 45 glo =) o)

~ Re / T F(w) (3l = b) — 9w + b)) do + / " fw) (gl + b) ;g(w - b))dw)

Hw) ~H(

= Re ( /O B [H(w) — H(w)] dw) =0

Imaginary part

Tm ( [ F@lgter+ bo - ([ st b)dw)>

= zm ([ st + 0o+ [ ssl oo = b
©)

= 7

3

</Of (9(w +0) + g(w - D)) dw+/ flw (w-{-l))—{—g(w—b))dw)

I
=
3

\

( /:f—w((—w-f-b)-i-g(—-w—b dw+/ flw (w—!—b)-{—g(w_b))du,)
( w) (9(=(w = b)) + g(=(w + b)) dw+/ f(w) (g(w + b) + g(w = b)) dw )
(
)

|1
= Im (Amf(w) ﬁ(w~b)—i—ﬁ(u}—{—b)J)dw—{-/ooo f(w) (g(w+b)+g(w—b))dw)

H(w) H(w)

- (/Om [H(w)+ Aw )]dw> _

Which proves the proposition m

=1

3

/

Appendix B
Proof of Theorem 5.1
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We outline here the proof of Theorem 5.1.

Proof of part (a): Since (31-33) is a 2/N-dimensional realization of G™"(s), we need
only prove that the rational function G™7"(s) is of order 2N for all n € Z, n # 0 if and
only if (39) holds.

The poles of G™n(s) (see (21)) are,

{n(m,n), T (m,n), v (m,n), Tg(m,n)}

where 7,(m,n) and vi(m,n) are defined by (20). Assuming (39) holds, n,(m,n) and
vi(m,n) have nonzero imaginary parts for all m,n € Z. Therefore, at s = n,(m,n) for
example, the term, -

[1(s = m(m.n))(s = 7a(m, n))

k

which appears in the numerator polynomial N, , (s) of G™n will be nonzero. Further-

m,n

more, the assumption that ¥ is of order IV, implies that p; # z; for all 2, k. Therefore
at s = ng(m,n) the remaining (nonzero) term in the numerator of G™" will be,

Nm,n(nk(ms n)) = CYH(S - IBj(m’ n))(s - 7j(7n’ n)) H(S - .ﬁf(mv TL))(S - Dl'(m.n)),

J k

which shows that G™ has no zeros at n,(m,n). Exactly the same argument can be
used to show that there is no cancellation with zeros for the remaining poles. Thus G™»
is of order 2N.

The converse is readily proved using a similar pole-zero cancellation argument. m

Proof of part (b): By hypothesis, (A,, 1y By Cmn) is a minimal realization of
Gmn(s) = Ny n(8)/ Dy p(s) for all (m,n) € J. Therefore N,,,, and D, ,, are coprime

polynomials. Consider the parallel combination of two WS transfer functions.
G7(8) = Gy ny (8) + Gy np (8), (B.44)

where J ={(my,ny), (my,n,)}. In this case
(N1 (8)s Doy iy (8)) and (Ny, 1, (8)Diny 1, (8)), are relatively coprime pairs. Rewrit-
ing (B.44),

Ng(s)

D(s)

leynl (S)sz,nz (3) + Nmz,ng(S)Dml,nl (S)
Dnn,m(s)sz,nz (8) '

Therefore Ns and D 7(s) will be relatively coprime if and only if D,,, ,, and D, .,(s)
are relatively coprime. The roots of D, , and D, .. (s) are given by (21). Thus D
and D,,, ,,(s) will have a common root if and only if,

Gs(s)

my,ny

ag " (pr +ingbo) = ag ™ (p; t ingby),
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for some [ andy. Solving for n,

my—1mng

no= - (ag* ™™ p; — py) % af 7,

- (af* ™™ (Re p; + iZm p;) — (Re py+ iZm py)) £ agt ™" n,

1
= (‘b“( T Imp; = Imopy) £ agt” "”m)
0

——i— (agr ™™ Re p; — Re p)) (B.45)

0

However, by hypothesis (40) there can be no integer solution n; to (B.45) since the
imaginary part of (B.45) will always be nonzero. The above argument for two WS
transfer functions is easily extended to any finite number of WS transfer functions in
parallel. m

Appendix C

Computation of Frame Parameters

Given an admissible analyzing wavelet g, the following theorem of Daubechies is
useful in determining dilation step-size a and translation step-size b for which (g, a,b)
generates an affine frame for L2(IR) .

Theorem C.1 (Daubechies [6]) Let g € L2(IR) and a > 1 be such that:
(1)

m(g;a) = ess félfa Z [9(a"w)|2 >0 (C.46)
(2)

M(g;a) = ess| T;l{{) ]Z 1G(a™w)|? < o0 (C.4T)
(3 i

lim 2 Z B(2rk/b)Y2B(—2mk /D)2 = 0, (C.48)

where
B(s) =ess sup Zlg a"w)|[g{a"w — s)].

lwl€lL,a]

Then there exists B, > 0 such that (g, a, b) generates an affine frame for each 0 < b < B..

Proof of the following corollary, can also be found in [6].

o
(&7



Corollary C.1 If g € L2(IR) and a > 1 satisfy the hypotheses of Theorem C.I then,

B, > b, = inf{b] m(g;a) — Qi BE2rk /b2 B(—21k/b)/? < 0} (C.49)

k=1

and for 0 < b < b, the frame bounds A and B can be estimated as,

A = b(m(g;a) -2

B(2mk/b)/2B(—2mk[b)!/?)

B < bYM(gia)+2) B2rk/b)V/2B(—27k/b)1/?) (C.50)

s E[7e

=

=1

26






